Bootstrapping principal component regression models
نویسندگان
چکیده
منابع مشابه
Bootstrapping Principal Component Regression Models
Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select ...
متن کاملRobust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملForecast comparison of principal component regression and principal covariate regression
Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. This paper compares two methods for dealing with many predictors, that is, principal component regression (PCR) and principal covariate regression (PCovR). The forecast performance of these methods is compared by simulating data from factor models and from regression models. The simulations show that, ...
متن کاملA principal component approach to dynamic regression models
In this paper we introduce a dynamic regression model that states how an output is related to an input allowing future values forecasting. The basic tools to set up this model are the orthogonal decomposition of a discrete time stochastic process by means of its principal components analysis, and the linear regression performed on the principal components of input and output processes. The beha...
متن کاملSketching for Principal Component Regression
Principal component regression (PCR) is a useful method for regularizing linear regression. Although conceptually simple, straightforward implementations of PCR have high computational costs and so are inappropriate when learning with large scale data. In this paper, we propose efficient algorithms for computing approximate PCR solutions that are, on one hand, high quality approximations to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemometrics
سال: 1997
ISSN: 0886-9383,1099-128X
DOI: 10.1002/(sici)1099-128x(199703)11:2<157::aid-cem471>3.0.co;2-j